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1. SpatialDE model

SpatialDE builds on the Gaussian process framework, assessing the evidence that
the gene expression patterns of individual genes are explained by functions with
different spatio-temporal dependencies.

In the following we assume that y = (y1, . . . , yN ) corresponds to a vector of expres-
sion values of a given gene at N spatial locations X = (x1, . . . ,xN ). The coordinates
of the spatial locations are typically two-dimensional, i.e. xi = (xi1 , xi2), however
the model is general and can also be applied to data wither other dimensionality,
such as three-dimensional or uni-dimensional (e.g. time-series) data.

1.1. Gaussian Processes regression. A Gaussian Process (GP) is a probability
distribution over functions y = f(x),

f ∼ GP(k (x,x′ |θk)),(1)

which is defined by a covariance function k(x,x′ |θk) that parameterizes the depen-
dency between any pair of function values f and f ′ based on their inputs x and x′;
and θk denotes a vector of additional hyperparameters of the covariance function
(see below).

While a GP defines a distribution on functions with infinite dimension, a finite
representation of a GP for observed data can be obtained by marginalising over
all unobserved function values. This results in a realisation of joint Gaussian
distributions for a vector of function values f :

p(f |HGP,X,θ) = N
(
f
∣∣∣0, σ2

s ·Σk(x,x′ |θk)

)
,(2)

where covariance matrix Σ
k(x,x′ |θk) is derived by evaluating the covariance function

for all pairs of observed datums Σk(x,x′ |θk)i,j
= k(xi,xj |θk), which can depends

on hyperparameters θk of the covariance function. We have factored out the scaling
of the covariance σ2

s , which determines the magnitude of total variance. Later, we
will introduce a parametrisation of Σ

k(x,x′ |θk) such that σ2
s can be interpreted as

the variance explained by spatial effects.
Assuming Gaussian distributed noise, i.e. p(yn | fn) = N

(
yn
∣∣µ, fn, σ2

e

)
, and

marginalising over the function values fn results in multivariate normally distributed
marginal likelihood of the observed expression values,

p(y |HGP,X,θ) = N
(
y
∣∣∣µ · 1, σ2

s ·
(
Σ
k(x,x′ |θk) + δ · I

))
,(3)

where we have defined δ =
σ2
e

σ2
s

for reasons that will become clear later. The fixed

effect µ · 1 models an offset or mean expression expression level for a given gene.
The resulting total covariance in (3) decomposes into two components, where

σ2
2 ·Σk(x,x′ |θk) can be thought of as explaining spatial variation in the data, whereas

σ2
s ·δ ·I represent the non-spatial residual variation. The full set of model parameters,

θ = (θk, σ
2
s , δ, µ) can be determined using maximum likelihood (see Section 1.4):

θ̂ = argmax
θ

P (y |HGP,X,θ).(4)
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1.2. Covariance functions. To find significant spatial variation and to compare
between alternative hypothesis of spatial variation for expression patterns, we assess
GP model with different covariance functions. An overview of many covariance
functions can be found in [Williams and Rasmussen, 2006]. In this work we make
use of the following:

• Null model: no spatial variance component
knull(x,x

′) ∝ 0

• General spatial pattern (known as the squared exponential (Gaussian) co-
variance function)

kspatial(x,x
′ | l) ∝ e−

1
2l2
|x−x′|2

• Linear covariance function
klin(x,x′ | p) ∝ xx′

T

• Periodic covariance function (cosine covariance function)
kperiodic(x,x

′ | p) ∝ cos(πp |x− x′|)

Interpretation of model parameters. In order to estimate the proportion of variance
explained by spatial covariance, we use Gower’s transformation to adjust for the
sample variance explained by Σ

k(x,x′ |θk) [Kostem and Eskin, 2013]:

g =
Tr(PΣ

k(x,x′ |θk)P )

n− 1
,

where

P = I − 1

n
11T.

This allows for defining the Fraction of Spatial Variance, FSV =
σ2
s ·g

σ2
s ·g+σ2

s ·δ
= g

g+δ ,

which corresponds to the fraction of the total variance explained by spatial variance.

1.3. Statistical significance and classification of spatially variable genes.

P-values from hypothesis testing. The significance of the spatial variance component
is assessed via model comparison:

p(y |H1,X,θ) = N
(
y
∣∣∣µ · 1, σ2

s ·
(
Σ
k(x,x′ |θk) + δ · I

))
,

p(y |H0,X,θ) = N
(
y
∣∣µ · 1, σ2 · I

)
.

Here, H1 denotes the alternative model, which includes both a spatial and
non-spatial component, and H0 denotes the null model without a spatial variance
component. These two models are nested, allowing estimation of the significance of
the spatial variance component using a log-likelihood ratio (LLR) test,

LLR = 2 · log
p(y |H1,X, θ̂1)

p(y |H0,X, θ̂0)
.(5)

P-values can be estimated in closed form, assuming that the log-likelihood ratios
under the null model are χ2 distributed with one degree of freedom.

We employ the Q-values procedure by [Storey and Tibshirani, 2003] to adjust
for multiple testing. Unless stated otherwise, we report genes at FDR < 0.05 as
significantly spatially variable.
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Calibration of the P-values was confirmed using permutation experiments (Supp.
Fig. 9) and data simulated from the null model (Supp. Fig. 10E). As additional
assessment of the empirical calibration of the method, we considered negative control
probes reported in the MERFISH data, confirming that the fraction of significant
negative control probes is in line with the expectation at a given family-wise error
rate (Supp. Fig. 13D).

Classification of spatial expression using model comparison. In order to characterise
the functional form of spatial trends, SpatialDE allows for model comparisons with
GP models that make stronger assumptions about the spatial dependency. Specifi-
cally, SpatialDE supports model comparisons between GP models with alternative
prior covariance functions: the general spatial model using a squared exponential
covariance function; a GP prior with periodic covariance function, using the cosine
kernel (See Section 1.2); and finally a GP prior with linear covariance function.

As these models differ in their number of parameters, we employ the Bayesian
Information Criterion (BIC), which has been shown to be effective for model
comparisons of alternative GP models [Lloyd et al., 2014]. Notably, a GP is typically
defined by a small number of hyperparameters, because the latent function values
fn are marginalised out, which means that the log marginal likelihood is a good
approximation for the model evidence. BIC penalises the maximum log-likelihood
by the number of parameters that are optimised, thereby accounting for differences
in model complexity:

BIC = log(N) ·M − 2 · L̂L.
Here, L̂L denotes the log marginal likelihood (Eq. 4), M corresponds to the number
of observations and N denotes the number of hyperparameters of a given model.
Each gene is then classified into different spatial trends by selecting the GP model
that minimises the BIC.

We also use the BIC to estimate posterior probabilities of specific models.
Briefly, the BIC is an estimate of − log p(y |Hi,X), which allows for deriving an
approximate form of the marginal likelihood of a given model Hi,

p(Hi |y,X) =
1

Z
· p(y |Hi,X) · p(Hi)(6)

=
1

Z
·
∫
θ
p(y |Hi,X,θ)p(θ)dθ p(Hi)

≈ − 1

Z
·BICi,

where
Z =

∑
i

p(y|Hi,X) · p(Hi) ≈
∑
i

−BICi,

assuming a uniform prior over models (p(Hi)). In the analysis, we consider the
models {Hspatial,Hlinear,Hperiodic} (see Section 1.2), and estimate marginal posterior
probabilities for all models using the BIC approximation.

Interpreting characteristic length scales and periods. The parameter l of the squared
exponential covariance function corresponds to the prior characteristic length scale of
the underlying function. In the Gaussian process regression models, this parameter
determines the distance at which observations stop covarying. As a concrete
example, if we put l = 1.0 then observations 0.66 units apart will have covariance
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0.8, observations 1.2 units apart will have covariance 0.5, and observations 2.0 units
apart will have covariance 0.13. It is important to realise that for any given length
scale, the covariance will only be strong within a region of distance, which is a
fraction of the selected length scale. For example, for observations to have spatial
covariance of at least 0.9, they can only be 0.46 · l units of distance apart.

A Gaussian process with a squared exponential covariance functions can capture
any smooth function (infinitely differentiable) with constant characteristic length
scale, including linear and periodic functions. As such, Gaussian processes with
linear or periodic covariance functions are special cases with stronger assumptions
on the functional forms.

In the periodic covariance function, observations very close to each other covary,
observations at medium distances have negative covariance, and further apart
observations start positively covarying again. For example, if we put the period p =
1.0, then observations 1.0 units apart will have covariance −1.0, while observations
2.0 units apart will have covariance 1.0. For observations to (locally) have covariance
at least 0.9 they can only within 0.14 · p units apart. But this will also enforce a
repeating pattern globally. A periodic Guassian process can describe two different
things, depending on the scale of the period: either a regularly repeating pattern, or
curves which decrease (or increase) throughout the domain in a sigmoidal fashion.
The latter functional form will take effect when the period is about twice the length
of the data. See Supp. Note Fig. 1A-C for examples of functions sampled from
different length scales and curves.

Cases where data fit the sigmoidal patterns suggested by long-perioded periodic
covariances happen in practice, as for example with the gene Foxj1 in the SeqFISH
dataset shown in Figure 2G. Supp. Note Fig. 1D shows the predicted mean
effect of the periodic and linear Gaussian processes along three projections of the
2D, showing a periodic-sigmoidal functions fits the data better than a linear plane.

1.4. Parameter inference. Maximum likelihood inference (Eq. 4), requires deter-
mining θ = (µ, σ2

s , δ,θk), where θk denotes additional covariance-specific parameters
(e.g. the length-scale l, see Section 1.2).

The log likelihood is

LL(y |HGP,X,θ) = log p(y |HGP,X,θ) = −1

2
N · log(2 · π)

− 1

2
log
(∣∣∣σ2

s

[
Σ
k(x,x′ |θk)+δ ·I

]∣∣∣)− 1

2
(y−µ·1)T

(
σ2
s

[
Σ
k(x,x′ |θk)+δ ·I

])−1
(y−µ·1)

Evaluation of the likelihood requires inverting the covariance matrix Σ
k(x,x′ |θk),

which depend on the parameter θk, rendering gradient-based optimisation of θk
a key bottleneck in inference (O(N3)). We comment on this later, but for now,
assume θk is known.

In statistical genetics, models that use covariance based models to capture
population structure have been sped up through spectral decomposition of the
covariance, to circumvent inverting the covariance matrix for each evaluation on
of the model [Lippert et al., 2011]. Here we adapt this approach for SpatialDE

to avoid repeated matrix inversions of σ2
s ·
[
Σ
k(x,x′ |θk) + δ · I

]
, by factoring the

covariance matrix with spectral decomposition Σ
k(x,x′ |θk) = USUT. This allows
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Supp. Note Fig. 1. Interpretation of periods and length
scales. (A-C) Simulated noise free 1D data with different covari-
ance functions. (A) Three simulations with linear covariance. (B)
Simulations from periodic covariance functions with different period
values. (C) Simulations from squared exponential covariance func-
tion with different characteristic length scales. (D) Visualization of
a gene with very long inferred period length. Top row shows the re-
gion where the Gaussian processes are predicted. Bottom row shows
expression level on the y-axis instead of the spatial y-coordinate.
Curves show expression level prediction from the Gaussian process
along the red line indicated in the top panel. Cells in grey or black
are spatially closer to the red line.

us to take advantage of the fact that eigenvectors are orthogonal, UUT = I:

σ2
s · (Σk(x,x′ |θk) + δ · I) = σ2

s · (USUT + δ · I) = σ2
s ·U(S + δ · I)UT.
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Now if we write the log likelihood as a function of δ, σ2
s and µ, we obtain

LL(δ, σ2
s , µ) = −N

2
· log(2 · π)− 1

2

· log(|Σ
k(x,x′ |θk) + δ · I|)− 1

2 · σ2
s

· (y − µ · 1)T (Σ
k(x,x′ |θk) + δ · I)−1(y − µ · 1)

=−N
2
·log(2·π)− 1

2
·log(|U(S+δ ·I)UT |)− 1

2 · σ2
s

·(y−µ·1)T (U(S+δ ·I)UT )−1(y−µ·1)

=−N
2
·log(2·π)− 1

2
·log(|U|·|S+δ ·I|·|UT |)− 1

2 · σ2
s

·(y−µ·1)TU(S+δ ·I)−1UT (y−µ·1)

=−N
2
·log(2·π)− 1

2
·log(|S+δ ·I|)− 1

2 · σ2
s

·((UTy)−(UT1)·µ)T (S+δ ·I)−1((UTy)−(UT1)·µ)

= −N
2
· log(2 · π)− 1

2
·
N∑
i=1

· log(Si,i + δ)− 1

2 · σ2
s

·
N∑
i=1

([UTy]i − [UT1]i · µ)2

Si,i + δ
)

The key features used are that |U|= |UT |= 1, and S+δ ·I is a diagonal matrix, so
both its determinant and inverse are trivial to compute (in O(N)). The expression
UT1 only depends on the coordinates X and can be pre-computed and reused for
every gene. The expression UTy will need to be re-computed for each gene, however,
it can be re-used for function evaluations during parameter inference.

We make use of the constraint that for the optimal µ = µ̂ we must have

∂LL(δ, σ2
s , µ)

∂µ
= 0,

and so

1

σ2
s

((UT1)T (S+δ ·I)−1(UTy)−(UT1)T (S+δ ·I)−1(UT1) · µ̂) = 0

⇒ (UT1)T (S + δ · I)−1(UT1) · µ̂

= (UT1)T (S + δ · I)−1(UTy)

⇒ µ̂

= ((UT1)T (S + δ · I)−1(UT1))−1(UT1)T (S + δ · I)−1(UTy)

=
(

n∑
i=1

1

Si,i + δ
[U
T
1]
T
i [U

T
y]i

)
/
(

n∑
i=1

1

Si,i + δ
[U
T
1]
T
i [U

T
1]i

)
.

When data is given, this expression only depends on δ and we write this as µ̂(δ).
The same procedure for σ2

s results in

σ̂2
s(δ) =

1

N

N∑
i=1

([UTy]i − [UT1]i · µ̂(δ))2

Si,i + δ
,
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which also depend only on δ. So, the entire expression for the log likelihood can be
written as

LL(δ) = −N
2
· log(2 · π)− 1

2
· S1(δ)− N

2
− N

2
· log(

1

N
S2(δ))),

S1(δ) =

N∑
i=1

· log(Si,i + δ),

S2(δ) =

N∑
i=1

([UTy]i − [UT1]i · µ̂)2

Si,i + δ
.

To optimise LL(δ) with respect to δ we use gradient based optimisation with the
bounded limited memory Broyden Fletcher Goldfarb Shanno (L-BFGS-B) algorithm
and a numerically approximated gradient.

To avoid gradient based optimization of the length scale `, we pre-compute a
grid of covariance matrices Σ

k(x,x′ |θk) and factorise them. The number of grid

points can be specified by the user, but our default settings is to put 10 grid points,
logarithmically spaced. The boundaries of the grid are by default set as the shortest
observed distance, divided by 2, and the longest observed distance multiplied by 2.
We have found these grids to give sufficient sensitivity, with very minor improvement
from additional grid points. After factoring the Σ

k(x,x′ |θk) matrices the U and S

matrices can be pre-computed and reused for each gene. We only need to do as many
O(N3) matrix decompositions as we have grid points. Each gene under investigation
will have a O(N2) step for each grid point to calculate the UTy factor. All other
calculations, including each optimisation iteration, will be O(N). Since our aim
to investigate data where G >> 10, this greatly reduces computational burden, as
illustrated in the comparison of the inference in SpatialDE and an implementation
in Stan (Supp. Fig. 2).

Estimation of standard errors. The FSV defined earlier is the main value of interest
from the fitted model and can be expressed as a function of δ,

FSV(δ) =
σ̂2
s(δ) · g

σ̂2
s(δ) · g + δ · σ̂2

s(δ)
=

g

g + δ
,

where g is the Gower factor for covariance matrix Σ
k(x,x′ |θk) for a given grid

point. To estimate the uncertainty of the FSV, we use the rules of Gaussian error

propagation. The uncertainty of the maximum likelihood estimate δ̂ of the parameter

δ is the inverse of ∂2LL(δ)
∂δ2 evaluated at δ̂. So, the standard error of FSV is

s2FSV =

(
∂FSV(δ)

∂δ

∣∣∣
δ=δ̂

)2

· s2δ ,

where

s2δ = 1/
(
∂2LL(δ)

∂δ2

∣∣∣
δ=δ̂

)2

.

To evaluate the two derivatives, finite difference approximation is used on the
LL and FSV functions.
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2. Automatic expression histology model

Expression histology can be defined as patterns in tissues determined by co-
expressed spatially variable genes. Intuitively, genes activated by the same pattern
can be said follow the same spatial function, but perturbed in different ways from
the underlying patterns. Let {µk} be a collection of K histological patterns with
activation strengths at each spatial coordinate. Individual genes can then be linked
to the patterns through a binary matrix Z, where gene g is explained by pattern k
if zg,k = 1. With these variables and the expression matrix Y, which consist of the
expression vectors (y1, . . . ,yG) for the G spatially variable genes, the expression
histology model can be formulated as a Gaussian process mixture model:

P (Y | {µk},Z, σ2
e) =

K∏
k=1

G∏
g=1

N
(
yg
∣∣µk, σ2

e · I
)zg,k

(7)

with informative priors

p({µk}) =

K∏
k=1

N
(
µk

∣∣∣0,Σk(x,x′ |θk)

)
,(8)

P (Z) =

K∏
k=1

G∏
g=1

(πk)
zg,k .(9)

The parameters for the prior on cluster membership, πk, are constrained such that∑K
k=1 πk = 1, and σ2

e is the noise level of the model.
A user need to make choices for two parameters: the number of patterns K and

the prior covariance Σ
k(x,x′ |θk). In practice, the use of the squared exponential

kernel with lengthscale set to an average inferred lengthscale of significantly spatially
variable genes is recommended.

The key quantify of interest is the posterior distribution P (Z, {µk} |Y, σ2
e), which

defines the assignment of genes to clusters and the activation strength of the inferred
patterns.

2.1. Variational Bayesian inference. To infer the posteriors of Z and {µk} we
make use of variational inference [Bishop, 2006], a deterministic inference scheme
with the goal to fit a parametric approximation to the true posterior. This is
achieved by making factorizing assumptions of the parameters of interest. In the
AEH model we define this factorization as

Q(Z, {µk}) =

G∏
g=1

Q(zg) ·
K∏
k=1

Q(µk).

The variational distribution Q(µk) is a multivariate normal distribution with
variational parameters mk and Wk,

Q(µk |mk,Wk) = N (µk |mk,Wk) .

The variational parameters are identified through variational updates, taking the
expectation of a single parameter conditional on the current estimate of all other
parameters (for brevity in these derivations, we set Σ = Σ

k(x,x′ |θk), and C∗’s

denote independent constants factored out in the derivation).
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lnQ(µk) ∝
〈
lnP (Y | {µk},Z, σ2

e) · P ({µ}) · P (Z)
〉
Q

=
〈
lnP (Y | {µk},Z, σ2

e) + lnP (µk) + C0

〉
Q

= lnP (µk) +
〈
P (Y | {µk},Z, σ2

e)
〉
Q

+ C1

= lnP (µk) +

G∑
g=1

〈
lnP (yg | {µk},Z, σ2

e)
〉
Q

+ C1

= lnN (µk |0,Σ) +

G∑
g=1

〈zg,k〉Q(zg,k)
· lnN

(
µk
∣∣yg, σ2

e

)
+ C1

= −1

2
· µT

kΣ−1µk +

G∑
g=1

(
〈zg,k〉Q(zg,k)

·(
−1

2
· (µk − yg)

T
(
σ2
e · I

)−1
(µk − yg)

))
+ C2

= −1

2
· µT

kΣ−1µk −
1

2
·
G∑
g=1

(
〈zg,k〉Q(zg,k)

·

(µk − yg)
T

(
1

σ2
e

· I
)

(µk − yg)

)
+ C2

= −1

2
· µT

kΣ−1µk −
1

2
·
G∑
g=1

(
〈zg,k〉Q(zg,k)

·(
µT
k

(
1

σ2
e

· I
)
µk − 2 · µT

k

(
1

σ2
e

· I
)

yg + yT
g

(
1

σ2
e

· I
)

yg

))
+ C2

= −1

2
· µT

kΣ−1µk −
1

2
·
G∑
g=1

(
〈zg,k〉Q(zg,k)

· µT
k

(
1

σ2
e

· I
)
µk

)
+

G∑
g=1

(
〈zg,k〉Q(zg,k)

· µT
k

(
1

σ2
e

· I
)

yg

)
+ C3

= −1

2
· µT

kΣ−1µk −
1

2
· µT

k

(∑G
g=1 〈zg,k〉Q(zg,k)

σ2
e

· I

)
µk+

µT
k

(
1

σ2
e

· I
) G∑
g=1

(
〈zg,k〉Q(zg,k)

· yg
)

+ C3

For clarity, we define Gk =
∑G
g=1 〈zg,k〉Q(zg,k)

and ŷk =
∑G
g=1

(
〈zg,k〉Q(zg,k)

· yg
)

.

= −1

2
· µT

kΣ−1θ µk −
1

2
· µT

k

(
Gk
σ2
e

· I
)
µk + µT

k

(
1

σ2
e

· I
)

ŷk + C3
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We can also summarise the matrix
(
Gk
σ2
e
· I
)

as Dk

= −1

2
· µT

kΣ−1θ µk −
1

2
· µT

kDkµk + µT
kDkŷk + C3

= −1

2
· µT

k

(
Σ−1θ +Dk

)
µk + µT

k ŷk ·
1

σ2
e

+ C3

= −1

2
· µT

k

(
Σ−1θ +Dk

)
µk + µT

k

(
Σ−1θ +Dk

) (
Σ−1θ +Dk

)−1
ŷk ·

1

σ2
e

+ C3

This takes the same form as

lnQ(µk |mk,Wk) = −1

2
· (µk −mk)TW−1(µk −mk) + C0

= −1

2
·
(
µT
kW−1µk − 2 · µT

kW−1mk + mT
kW−1mk

)
+ C0

= −1

2
· µT

kW−1µk + µT
kW−1mk + C1.

with final update equations:

W−1
k = Σ−1θ +Dk,

mk = Wkŷk ·
1

σ2
e

.

The variational distribution Q(zg) takes the form of a multinomial distribution
with parameters r,

Q(zg | rg) =

K∏
k=1

r
zg,k
g,k .
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The variational updates for the parameters r follows as

lnQ(zg) ∝
〈
lnP (Y |µ, Z, σ2

e) · P (µ) · P (Z)
〉
Q

=
〈
lnP (Y |µ, Z, σ2

e) + lnP (Z) + C0

〉
Q

= lnP (zg) +

K∑
k=1

〈
lnP (yg |µk, Z, σ2

e

〉
Q

+ C1

=

K∑
k=1

zg,k · (lnπk) +

K∑
k=1

zg,k · ln
〈
N
(
µk
∣∣yg, σ2

e · I
)〉
Q

+ C1

=

K∑
k=1

zg,k · (lnπk−

1

2
·
〈

ln|σ2
e · I|+(µk − yg)

T(
1

σ2
e

· I)(µk − yg) +N · ln(2 · π)

〉
Q

)
+ C1

=

K∑
k=1

zg,k ·
(

lnπk −
1

2
·
(
ln|σ2

e · I|+〈
(µk − yg)

T(
1

σ2
e

· I)(µk − yg)

〉
Q

+N · ln(2 · π)

))
+ C1

=

K∑
k=1

zg,k · ln ρg,k + C1.

This implies

Q(zg) ∝
K∏
k=1

ρ
zg,k
g,k .

By scaling the ρ-terms we arrive at the final updates of rg,k:

rg,k =
ρg,k∑K
k=1 ρg,k

.(10)

Remaining parameters are determined by maximising the evidence lower bound
(ELBO). The ELBO for the AEH model is

L =
〈
lnP (Y,Z,µ, σ2

e)
〉
−
〈
lnQ(Z,µ, σ2

e)
〉

=
〈
lnP (Y |Z,µ, σ2

e)
〉

+ 〈lnP (Z)〉+ 〈lnP (µ)〉 − 〈lnQ(Z)〉 − 〈lnQ(µ)〉



SPATIALDE SUPPLEMENTARY NOTE 1 13

where the individual terms evaluate to〈
lnP (Y |Z,µ, σ2

e)
〉

=

K∑
k=1

G∑
g=1

rg,k · ln(ρg,k),

〈
lnP (Y |Z,µ, σ2

e)
〉

=

K∑
k=1

G∑
g=1

rg,k ·
(

lnπk −
1

2
·(

ln|σ2
e · I|+(mk − yg)

T(
1

σ2
e

· I)(mk − yg) +N · ln(2 · π)

))
,

〈lnP (Z)〉 =

K∑
k=1

G∑
g=1

rg,k · ln(πk),

〈lnP (µ)〉 = −1

2
·
K∑
k=1

(
ln|Σθ|+mT

kΣ−1θ mk +N · ln(2 · π)
)
,

〈lnQ(Z)〉 =

K∑
k=1

G∑
g=1

rg,k · ln(rg,k),

〈lnQ(µ)〉 = −1

2
·
K∑
k=1

(ln|Wk|+N · ln(2 · π)) .

Interleaved with the variational updates, the ELBO is maximised with respect
to σ2

e , and the π parameters are updated by

πk =
Gk
G
,

which further increases the ELBO and allows the model to discard superfluous
histological patterns during inference.

3. Data normalisation

The presented Gaussian process models is based on the assumption of normally
distributed residual noise and independent observations across cells. To meet these
requirements, we have identified two necessary normalisation steps.

First, both spatial transcriptomics and in-situ hybridisation data produce counts
of transcripts. Spatial Transcriptomics uses unique molecular identifiers (UMIs) to
count amplified transcript tags from next generation sequencing reads, while smFISH
counts fluorescent probes inside cell boundaries. By investigating mean-variance
relationships in multiple data sets from spatial technologies, we empirically observed
that negative binomial (NB) noise is able to capture these dependencies. To stabilise
the variance, we use the approximate Anscombe’s transform for NB data on the
observed counts ŷ and compute y = log(ŷ + 1

φ ), where φ is the overdispersion

parameter [Anscombe, 1948]. This parameter φ is estimated by fitting the quadratic
Var(y) = E(y) + φ · E(y)2 across all genes in a study.

Second, we note that in the datasets we investigated, every gene’s expression
correlates with the total transcript count in the cells. In particular, for MERFISH
data the area of cells is provided and we note that the total count correlates
strongly with the cytoplasmic area. This relation has previously been described
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by [Padovan-Merhar et al., 2015], who showed that cells compensate mRNA content
in response to the cytoplasmic volume. The total count is thus a proxy of cell size.

While there are many instances where variation in cell size is self of biological
interest, cell size assays are easier than gene expression assays, and here we aim to
study the regulation of gene expression independent of cell size. In particular, if
the distribution of relative cell sizes show spatial dependencies, every gene will be
considered spatially variable.

Consequently, we consider expression levels that are adjusted for variation in cell
size, using linear regression to account for this dependence by regressing out the
log total count from the Anscombe transformed expression values before fitting the
spatial models.

For comparison, we also considered the spatial variation test on the total count
in each data set. In all data sets the variation is significant, with between 30% and
80% FSV (results marked as X’s in Figure 2 and supplementary figures). In the
frog development RNA-seq data, proxies for cell size (ERCC expression and number
of genes detected) are over 95% spatially variable.

4. Unsupervised clustering analysis and ANOVA

To compare our results to analysis not considering spatial information we applied
principal component analysis to reduce the dimensionality followed by clustering
using a Bayesian Gaussian mixture model applied to the first two principal com-
ponents. The Bayesian Gaussian mixture model was initialized with 20 clusters.
The implementation in scikit-learn was used (BayesianGaussianMixture), with the
max iter parameter set to 10000. After inference, in both datasets 4 clusters were
retained (Supp. Fig. 5A-C and Supp. Fig. 7A-C). Genes varying between
clusters were identified by an ANOVA test expression levels processed analogously
as for SpatialDE.

5. Assessing statistical calibration through data simulation

To investigate the limits and power of SpatialDE we used simulated data with
known ground truth. These data allowed us to assess the power for detecting spatial
variation as a function of the simulated FSV level, and for alternative simulated
settings. To ensure the settings we considered were in line with real data, we used
the spatial X-coordinates from the mouse olfactory bulb data set.

5.1. Simulation of bell curve shaped data. A two dimensional bell curve is
calculated as kspatial(x,x

′ | l) in Section 1.2, where l is the radius of the bell, and x′

is fixed as the center of the bell (which we chose as (14.0, 15.0)T here) (Supp. Fig.
10A). Bell shaped expression profiles were simulated for 15 radii evenly distributed
on a log scale from 1

4 of the smallest pairwise observed distance (0.2) and 4 times the

largest pairwise observed distance (85.9). For non-spatial variation, 200 σ2
n values

were sampled uniformly on a logarithmic scale from the interval [10−3, 10], and noise
sampled from N (0, σ2

n) was added to the bell curves. Ground truth FSV values
were calculated using the variance of the bell curve and the variance parameter.

After applying SpatialDE to the 3,000 simulated bell curve genes, we considered
P-values from the tests stratified over FSV ranges and bell radii. Statistical power
was assessed as the fraction of genes with P < 0.05 (Supp. Fig 10B).
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5.2. Simulation from the SpatialDE model. True spatial covariances Σ were
generated from kspatial(x,x

′ | l) for 15 values of l as described above. True FSV
values were sampled 200 times uniformly on a log scale from the interval [10−2, 1],
and for each FSV, δ = 1

FSV − 1 was calculated. Using these parameters, gene

expression levels on the spatial locations were simulated by randomly drawing from
N (0,Σ + δ · I) for the 15 · 200 = 3, 000 parameter combinations.

After applying SpatialDE to the simulated data, P-values were stratified by FSV
and the true simulated characteristic length scale. Statistical power was assessed as
the fraction of genes with P < 0.05 (Supp. Fig 10C).

5.3. Simulation from null model. Data with no true spatial covariance were
simulated by 3,000 draws from the normal distribution N (0, 1).

After applying SpatialDE to simulated data, the fraction of genes passing increas-
ingly stringent significance thresholds was calculated, indicating the significance
test is conservative. (Supp. Fig. 10E)

6. Computational Performance Benchmark

Data for 10,000 genes were simulated according to the SpatialDE model with
various effect magnitudes for multiple sample sizes. For SpatialDE, the test was run
on these data and timed according to a wall clock. For the Stan implementation,
100 random genes were sampled for each sample size, and timing was extrapolated
by multiplying the time by 100 (Supp. Fig. 2). It should be noted that this
problem is trivially parallelizable across genes, and the considered implementations
are comparable and that they do not make use this. Benchmarks were performed
on a Late 2013 iMac with a 3.2 GHz Intel Core i5 processor and 32 GB of DDR3
RAM, a typical consumer level PC.

7. Software availability

The primary implementation of SpatialDE is a Python 3 package, which can
be installed from PyPI using pip. Development is public on Github1. A Stan
implementation is also provided in the same repository, as well as code for all
analysis presented in this paper, and additional tutorials and notebooks illustrating
how to use the package. All data used in our analysis is also available in preprocessed
form from the Github repository using git-LFS.
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